Naturalization of the microbiota developmental trajectory of Cesarean-born neonates after vaginal seeding.

Med (New York, N.Y.). 2021;2(8):951-964.e5
Full text from:

Plain language summary

Studies on model organisms show that foetal development can be modulated by microbial products from the pregnant mother’s microbiota, and early colonisation is critical for immune system development. However, natural transmission and colonisation of maternal microbes is impaired by caesarean section (CS) delivery. The aim of this study was to determine the effect of restoring exposure to maternal vaginal fluids after CS birth. This study is a large observational study of 177 infants born to 174 mothers. Physicians assessed healthy mothers who were set to deliver vaginally or by scheduled CS. Results demonstrate that microbial differences associated with delivery mode can be reduced by exposure to a vaginal microbial source at birth. In fact, birth mode significantly differentiated infant gut and skin microbiome development, and that seeding worked to adjust the trajectory of CS-delivered infants through partial restoration of microbiome features associated with a vaginal delivery. Authors conclude that restoring natural exposures at birth may be one way to reduce the risk of CS-associated diseases such as obesity, asthma, allergies, and immune disfunctions. However, randomised clinical trials on large cohorts are needed to gain conclusive evidence for microbial restoration at birth improving health outcomes.

Abstract

BACKGROUND Early microbiota perturbations are associated with disorders that involve immunological underpinnings. Cesarean section (CS)-born babies show altered microbiota development in relation to babies born vaginally. Here we present the first statistically powered longitudinal study to determine the effect of restoring exposure to maternal vaginal fluids after CS birth. METHODS Using 16S rRNA gene sequencing, we followed the microbial trajectories of multiple body sites in 177 babies over the first year of life; 98 were born vaginally, and 79 were born by CS, of whom 30 were swabbed with a maternal vaginal gauze right after birth. FINDINGS Compositional tensor factorization analysis confirmed that microbiota trajectories of exposed CS-born babies aligned more closely with that of vaginally born babies. Interestingly, the majority of amplicon sequence variants from maternal vaginal microbiomes on the day of birth were shared with other maternal sites, in contrast to non-pregnant women from the Human Microbiome Project (HMP) study. CONCLUSIONS The results of this observational study prompt urgent randomized clinical trials to test whether microbial restoration reduces the increased disease risk associated with CS birth and the underlying mechanisms. It also provides evidence of the pluripotential nature of maternal vaginal fluids to provide pioneer bacterial colonizers for the newborn body sites. This is the first study showing long-term naturalization of the microbiota of CS-born infants by restoring microbial exposure at birth. FUNDING C&D, Emch Fund, CIFAR, Chilean CONICYT and SOCHIPE, Norwegian Institute of Public Health, Emerald Foundation, NIH, National Institute of Justice, Janssen.

Lifestyle medicine

Fundamental Clinical Imbalances : Digestive, absorptive and microbiological
Patient Centred Factors : Mediators/Vaginal microbiota
Environmental Inputs : Microorganisms
Personal Lifestyle Factors : Environment
Functional Laboratory Testing : Saliva ; Stool

Methodological quality

Jadad score : Not applicable
Allocation concealment : Not applicable

Metadata

Nutrition Evidence keywords : Microbiota ; Obesity ; Microbiome